
Multi-Agent Behaviour Segmentation via Spectral Clustering

Bálint Takács and Simon Butler and Yiannis Demiris
Intelligent Systems and Networks Group

Electrical and Electronic Engineering
Imperial College

South Kensington Campus London SW7 2AZ

Abstract
We examine the application of spectral clustering for
breaking up the behaviour of a multi-agent system in
space and time into smaller, independent elements. We
extend the clustering into the temporal domain and pro-
pose a novel similarity measure, which is shown to
possess desirable temporal properties when clustering
multi-agent behaviour. We also propose a technique to
add knowledge about events of multi-agent interaction
with different importance. We apply spectral clustering
with this measure for analysing behaviour in a strategic
game.

Introduction
Segmenting complex joint behaviours of multi-agent sys-
tems into smaller independent elements is of utmost impor-
tance since such segmentation can be used for automatic
plan extraction, plan recognition or subgoal selection in
learning tasks.

In most cases, the behaviour of a multi-agent system is
built up from independent, smaller elements. For example,
consider the RoboCup domain: if a goal was scored, we
could determine which agents participated in performing the
goal through simple rules, for example, examining single in-
dicators of interaction (like who touched the ball prior to the
goal). We can then effectively break up a match into smaller
parts. The problem is obviously much more complicated:
a single agent generally can participate in multiple conse-
quent elements in the same match, or can fill multiple roles
in two parallel ongoing elements. Examining single indica-
tors of interaction is not enough to separate these elements,
because not all interactions tie agents together (for exam-
ple, an agent may see all the other agents from a distance,
but usually interacts only with the nearest ones). It means
we need to identify temporal and spatial boundaries between
these elements in a very noisy environment. We also need to
consider scaling of the separation: a specific agent or agent
group may affect other agents only for a short time and in a
specific role, and it is possible that no further description is
required about the internal structure of the agent group.

These problems are crucial in analysing multi-agent sys-
tem behaviour in general and are strongly connected to

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

plan recognition (see e.g. (Devaney & Ram 1998; Nair et
al. 2004; Sukthankar & Sycara 2006) and the references
therein). Plans are different from the elements we are trying
to identify here: a plan is a higher-level concept which may
span multiple element of the joint behaviour. Nevertheless,
elements can be considered as low-level plans which were
extracted automatically.

A major question here is how to define independence
between elements. One may think in terms of probabil-
ity theory, where methods do exist to deal with noisy en-
vironments. For example, “blind” statistical algorithms,
like independent component analysis, are capable of separa-
tion by probabilistic independence without a known model.
However, we think that measuring event densities and thus
probability-based separation cannot be applied in most of
the cases, because estimating probabilistic models require
lots of samples usually not available.

An alternative approach is to use clustering (Xu & Wun-
sch 2005). The goal of clustering is to separate a finite
unlabeled data set into a finite and discrete labelled set of
“natural”, hidden data structures. We may try using clus-
tering algorithms to label agents or group of agents in time
and space, and then view the cluster boundaries as spatio-
temporally separated elements. Clustering is an ill-posed
problem from the mathematical point of view, because what
is “natural” is usually decided by human judgement as no
labelled data available, but despite of this, clustering algo-
rithms are frequently applied to gain insight to the structure
of data.

Multi-agent systems are frequently operate in the two-
dimensional spatial domain, like the already mentioned
RoboCup. In these domains, agent positions form a set of
two dimensional points. An emerging approach to clus-
tering is spectral clustering (Shi & Malik 2000; Ng, Jor-
dan, & Weiss 2001; Bach & Jordan 2006), which is shown
to be able to catch human impression about grouping two-
dimensional point formations very efficiently (Shi & Malik
2000; Zelnik-Manor & Perona 2004). Spectral clustering
is also appealing because it is related to manifold learning
(Lafon, Keller, & Coifman 2006; Ham, Ahn, & Lee 2006),
which is about finding low-dimensional representations of
data along geometrical constraints. We may expect that two
dimensional multi-agent behaviour is subject to such con-
straints and therefore manifold learning may be able to re-

in Proceedings of the AAAI-2007 Workshop on Plan, Activity and Intention Recognition (PAIR), pp.74-81 (2007)

duce dimensions effectively.
Clustering methods require an affinity (or similarity) mea-

sure over the points to be clustered, which is a local measure
telling the expectations about whether two point should be
labelled similarly or not. Affinity measures are usually a
function of the distance between the points (here distance
not always equivalent with the Euclidean metric, see e.g.
(Xu & Wunsch 2005)). If u and v are points in the full set V ,
the point-to-point affinities form the N × N sized w(u, v)
affinity matrix if we have N points to cluster.

Spectral clustering concerns the minimal normalised cut
of the affinity graph, which is the graph corresponding to the
affinity matrix with edge weights defined between points u
and v as w(u, v) (Shi & Malik 2000). If the set of graph
nodes, noted by V , are to be cut into two separated sets A
and B, the normalised cut is defined as follows:

Ncut(A, B) =
assoc(A,B)
assoc(A, V)

+
assoc(A, B)
assoc(B, V)

(1)

where

assoc(A,B) =
∑

u∈A,v∈B

w(u, v). (2)

Since V = A
⋃

B and A
⋂

B = ∅, assoc(A, V) =
assoc(A,B) + assoc(A,A). In other words, normalised
cuts are trying to find cuts of the graph where the
assoc(A,B) cut value is minimal, but the assoc(A,A)
intra-cluster affinities of the two sets are maximal. Nor-
malised cuts are superior to minimum cut approaches be-
cause they take into consideration the intra-set dependencies
as well.

It was shown that the eigenvector decomposition of the
affinity matrix can be used for finding approximate solu-
tions to the minimal normalised cut problem, which is NP-
complete (Shi & Malik 2000). This is why this method is
called spectral clustering. As explained by Markov random
walks (Lafon, Keller, & Coifman 2006), when one consid-
ers only the first few eigenvectors of this decomposition, the
number of eigenvectors retained can be seen as a scaling
parameter to the clustering, thus we can hope to treat the
scaling problem as well. Other recent works showed that
spectral clustering is deeply connected to non-linear dimen-
sionality reduction methods like ISOMAP or locally linear
embedding (see (Saul et al. 2006) for a review) or kernel
PCA methods (Bengio et al. 2004), and can be seen as a
method searching for block-diagonal groupings of the affin-
ity matrix (Fischer & Poland 2005).

Finding the Affinity Measure
Based on the convincing perceptual grouping performance
of the algorithm, spectral clustering is a good start for find-
ing spatial groupings in multi-agent systems. However, it is
still an open question how to extend the clustering into the
temporal domain.

Defining what to cluster is the first step. By a simple ex-
tension of the two-dimensional problem space of clustering

agent positions into the temporal domain, we get that each
point is defined in the form of u : (x, y, t), where t is its
owner agent’s time spent from the beginning of the engage-
ment, and x, y its 2D coordinates at that time. We will call
a normalised cut found by the clustering temporal if the cut
includes edges that only connect nodes which have different
temporal value (but belong to the same agent), and spatial
if the cut has edges which do belong to different agents at
the same time. Let assume that we record an agent’s posi-
tion with a prescribed frequency, for example, we measure it
once in each second and the time is measured by the number
of these ,,ticks” spent. This also means that we record dis-
crete times but continuous spatial positions, which is usually
the case in real-life problems.

Defining an affinity measure over these points is not ob-
vious. The original spectral clustering approaches typically
use Gaussian affinities (Shi & Malik 2000; Zelnik-Manor &
Perona 2004):

w(u, v) = exp
(
−d(u, v)2

σ2

)
(3)

where d(u, v) is the Euclidean distance between points u
and v and σ is a scaling parameter.

The most straightforward extension of this affinity mea-
sure to the spatio-temporal domain is if we extend the Eu-
clidean distance to the temporal dimension as well. How-
ever, this kind of extension has strange properties: a single
agent standing still will have the temporal cut value decreas-
ing to zero as time progresses. It is easy to see if we consider
that in this case the graph of the points to be clustered forms
a simple chain in time. The minimal normalised cut is in
the middle of the chain. If we extend the chain on the two
ends, all extra nodes will contribute to the intra-cluster edge
weights, but they will contribute almost nothing to the cut
weight because the value of a Gaussian far from its center
is almost zero. It means any cut involving the single, stand-
ing agent will prefer only temporal cuts as time progresses,
which is not a desirable property of this affinity measure.
If we wait long enough, any normalised cut which involves
this agent will unavoidably split the agent’s history in time
and never in space (or, if we repeat cutting to get more clus-
ters, the first few cuts will be always temporal, at least until
the temporal length of the segments become small enough).
In other words, affinities good for spatial clustering are not
giving the expected result in time.

It looks like we have to modify the affinity measures for
the purpose of clustering spatio-temporal multi-agent be-
haviour. We may try weighting in the different modalities
(space or time), but it could introduce a lot of parameters.
To reduce the number of parameters, we should start with
defining sensible constraints on the measure, like

1. the measure should be local,
2. it should be equivalent to the affinity measure of Eq. (3)

when there is no temporal difference between two points,
3. if u : (x1, y1, t1) and v : (x2, y2, t2), and we define

∆x =
√

(x1 − x2)2 + (y1 − y2)2 and ∆t = |t1 − t2|, it
should be monotonically decreasing with increasing ∆x

t = 1

t = 2

t = N

...

1

agent 1 agent 2

set A’

set B’

set Bset A

f(D)

t = c

Figure 1: Two-agents-standing scenario. This is the (full)
affinity graph that illustrates the case where two agents are
standing at D distance from each other. We assume that the
agents’ position is measured N times in equal intervals. The
two sets belonging to spatial cuts are marked by A and B,
while the sets marked by A′ and B′ in the case of temporal
cuts. The t = c parameter is the time index of the boundary
between sets A′ and B′. The temporal cut is balanced if
c = N/2 (assuming N is even). The shown edge values
f(D) and 1 are of the proposed measure of Eq. (10) if we
set the time spent between two measures to 1.

and ∆t, that is, points with increasing distance should be
less similar,

4. it should be translation invariant and symmetric in time as
well, that is, w(u, v) should depend only on the temporal
difference ∆t (and not directly on t1 or t2),

5. it should be robust against time spent in the case of “stand-
ing” agents. One possible way to concretise this is the fol-
lowing: normalised cut values for standing agents should
not depend on the total time of the graph neither in the
case of spatial nor temporal cuts.
A possible way to provide theoretical analysis of the aris-

ing affinity measures is to examine simple scenarios like
the single agent case was, and select parameters of possi-
ble measures according to the expected behaviour in these
cases. The next simplest case is when two agents standing at
D distance from each other (Figure 1). This case can be seen
as an approximation to the general case, where we consider
each (closest) pair of agents individually and neglecting all
the effects of other agents.

In the case of the two-agents-standing scenario, if we
search for the affinity measure in the form of

w(u, v) = f(∆x) · g(∆t), (4)

Figure 2: The affinity matrix of the one-agent-standing
case. The example here shows the affinity values of
g(∆t) = ∆t−1/2. Diagonal values were set to 1. The
sum of the affinities below the area marked by α equals to
assoc(A′, B′) and the sum of the affinities below the rect-
angle marked by β equals to assoc(A′, V).

the spatial normalised cut values will not depend on the to-
tal time spent at all. That is because after substituting Eq.
(4) into Eq. (2) and inserting it into Eq. (1), we get that
Ncut(A,B) does not depend on g(∆t) and

Ncut(A,B) = 2f(D)/(1 + f(D)). (5)

Here A and B are the two sets of a spatial cut (Fig. 1) and
D is the distance of the agents. By equating f(∆x) with the
right-hand side of Eq. (3), that is, by defining

f(∆x) := exp(−∆x2

σ2
), (6)

we have f(D) changing between 0 and 1, which in turn
means that the normalised spatial cut value changes between
0 and 1, and is equal to zero only if the points are totally spa-
tially dissimilar (they are infinitely far away). That means
that spatial cuts will fulfill our last requirement.

The values of temporal cuts are harder to calculate in an
explicit form. First, we may exploit the fact that by assum-
ing a form of the measure as in Eq. (4), the temporal cut
values of the two-agents-standing scenario are equivalent to
the values of temporal cuts in the case when one agent is
standing. It again can be seen from substituting Eq. (4) into
Eq. (2) and inserting it into Eq. (1).

Let assume that the temporal cut is balanced in the one
agent case, that is, it prefers cutting N points into two parts
consisting N/2 points each (later we will check whether this
assumption really holds). Let us try the following temporal
measure: g(∆t) = ∆t−r, where r is a constant, and define
g(∆t) := 1 if ∆t = 0. It is obvious that this measure fulfills
our requirement above for decreasing affinity by increasing
temporal distance. The normalised cut value then can be ap-
proximated by 2x the sum of elements of the affinity matrix

Figure 3: Cut values as a function of N in the case of the
two-agents-standing scenario with D = 1 and σ = 1. As
can be seen, the value of spatial cuts is constant, while the
value of temporal cuts converge rapidly with time. By tun-
ing the σ parameter, we can determine the smallest distance
where we start prefer spatial instead of temporal cuts.

in the upper right quadrant divided by the sum of elements
in the upper half of the matrix (see Fig. 2). We may assume
without the loss of generality that N is even, so these sums
can be written as

assoc(A′, B′) =
N/2−1∑

i=0

N−i−1∑

j=N/2−i

j−r (7)

assoc(A′, V) = assoc(B′, V) =

= assoc(A′, B′) +
N

2
+ 2

N/2−1∑

i=1

N/2−i∑

j=1

j−r, (8)

where A′ and B′ are the two sets of the temporal cut (Fig.
1). These sums can be substituted with integrals as N in-
creases, and Eq. (1) can be approximately calculated in an
explicit form for different r values in the case of the two-
agents-standing scenario. It turns out that for r ≥ 1 inte-
gers, limN→∞Ncut(A′, B′) = 0 (although at r = 1, the
cut value decreases very slowly for all practical N values).
For r = 1/k where k = 2, 3, · · · , after tedious but elemen-
tary calculations one can see that

lim
N→∞

Ncut(A′, B′) = 2− 21/k. (9)

For example, in the case of k = 2, Ncut(A′, B′) > 0.585
for all N values (see Fig. 3). Higher k values result in a
faster convergence, but time differences also have a lower
impact on cut values.

The convergence of temporal cut values means that for
sufficiently big N values, temporal cuts are practically inde-
pendent of the total time spent. Because temporal cut values
are bounded from below, we can set up the spatial cut values

Figure 4: The temporal cut value as the function of the
cutting point in the case of the two-agents-standing sce-
nario with D = 1 and σ = 1. Here N = 600 was fixed and
the impact of c cutting point of Fig. 1 was examined with the
affinity measure of Eq. (10). The measure prefers balanced
cuts, that is, cuts which split the temporal domain into two
same-sized parts.

in a way that their value compared to temporal cuts depends
on the D distance between the agents only. Thus the pre-
requisite for being clustered in the same group because of
spatial distance is determined solely by the σ parameter, that
is, we can set σ to determine a minimum distance where two
agents never will be clustered into the same group, no matter
how much time was spent. We can conclude that the com-
bined measure approximately fulfills the last requirement in
the case of two agents.

To summarise, the proposed affinity measure for spatio-
temporal spectral clustering of agent behaviour is as follows:

w(u, v) =

{
1√
∆t

exp
(
−∆x2

σ2

)
if ∆t 6= 0,

1 otherwise.
(10)

The single parameter of this measure is σ, just like it was
in the case of the original affinity measure. Figure 3 shows
the cut values with this measure in the case of the two-
agents-standing scenario as a function of N . Based on this
and the analysis given in this section, we can therefore give a
natural interpretation to σ as – if there are two agents and no
special events present – being about two times the distance
between the agents where the algorithm starts to prefer spa-
tial cuts instead of temporal ones. This means agents are
thought to be far away enough to be clustered as a separate
group at distances of about σ/2.

We still have to check that the affinity measure of Eq. (10)
prefers balanced temporal cuts, that is, it has the smallest cut
value at c = N/2 where c is the cut point of Figure 1 (we
can assume without the loss of generality that N is even),
or, in other words, a temporal cut is smallest when we cut a
temporally symmetric graph into two equally sized parts. It
can be justified by a simple numerical test (Figure 4) or in a

more rigorous way, via elementary calculus with relaxing c
to allow taking continuous values and taking the derivative
of Ncut(A′, B′) with respect to c.

Adding Events
It is obvious that using only agent positions is not enough
for catching the behavioural aspects of the multi-agent sys-
tem. Fortunately, we may assume that a log of events is also
available, which can be seen as a history of low-level inter-
actions. We may assume that each event has a relative im-
portance measure and we know the participants of that event.
For example, in the case of a strategic computer game, we
may assume that we can record when a unit fires at an enemy
and who this enemy was. Lots of similar low-level events
are possible to define, and a human expert can set a relative
importance to each of these events in quite a natural way. It
is advantageous to treat positional information like events as
well, which occur with a fixed frequency. These positional
events can have much lower importance than events cover-
ing some important interaction.

Adding events with different importance can be done by
exploiting the fact that with spectral clustering the affinity
measure is only required to be symmetric and positive. We
also know that affinities created by Eq. (10) are falling be-
tween 0 and 1, therefore we can think of simple spatial con-
nections as having a value of 1 when scaling event impor-
tance. When adding an event for two agents into the affinity
matrix, we do not have to introduce new nodes: we may cal-
culate the closest temporal representation of both agents and
set the affinity between these nodes to the event importance.
It is reasonable to add a temporal “depth” to the event as
well, which means setting the affinities to the agents’ next
and previous nodes to the importance as well. If we need
to superimpose multiple events, we can simply add their im-
portance measures.

When events are available, instead of clustering spatio-
temporal positions of each agent, one may consider cluster-
ing in the space of events with combined spatial positions of
the participants and its time. This choice ends up with more
dimensions, which may cause problems for clustering (Xu
& Wunsch 2005). This option also has the problem that it
is not too easy to incorporate event importance. Multiplying
the number of events by their importance is possible, how-
ever, it may rapidly increase the number of points. Addi-
tionally, this clustering is not equivalent to two dimensional
clustering of agent positions when neglecting the temporal
dimension.

Experiments
We tested our ideas on a multi-agent system developed to
simulate small-scale conflict of armoured units. The pro-
gram can be compared to real-time strategy games in com-
puter entertainment, where human operators can move the
units according to their commands. Two players and only
one type of unit was present, which were modelled to the ex-
tent of movement and firing of the main gun. A very simple
damage model was employed, where the actual unit damage
status is described by a scalar value, and the unit is destroyed

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Ratio of erased events

N
o
rm

a
liz

e
d
 a

v
e
ra

g
e
 a

n
d
 S

T
D

 o
f
id

e
n
ti
c
a
lly

 c
lu

s
te

re
d
 p

o
in

ts

Figure 6: The stability of the results as a function of the
ratio of events deleted from the history. The first scenario
of Fig. 7 was used. We gradually increased the amount of
data deleted from the history and calculated the number of
differently clustered points, ten times each. The curve shows
the measured average deviance and the standard deviations
from the case when all the events were retained. In each
case, the comparison is made in the “fairest” cluster assign-
ment (we considered that the algorithm may output clusters
in different order).

if this indicator reaches zero. The amount of damage dealt
with a hit was dependent on the accuracy of the hit. We
modeled the unit movement and behaviour by real physi-
cal dynamical modeling. The environment was described
with a two-dimensional heightmap. This approach is satis-
fying to depict the most important aspects of the game from
the planning point of view, like entrenchment, open ranges
and line-of-sight. The goal of the engagement was to de-
stroy all units of the enemy. The units were initially placed
in pre-defined positions. Units fired automatically on the
nearest target when it was available. Human operators were
able to select target positions for movement for each unit
independently. To ease operation by humans, the simula-
tion accepted commands in a ”paused” state when the flow
of time was frozen, thus a human operator is able to sub-
stitute multiple human operators, thus effectively modelling
an all human-controlled multi-agent system. The software is
based on the Delta3D engine (http://www.delta3d.org/) and
is open-source and multi-platform.

We created multiple maps (two of these can be seen on
Figure 5) and played battles on these maps to produce multi-
agent behavioural data. We used the spatio-temporal affinity
measure proposed in the previous section to create the affin-
ity matrix. σ was set to 200 and spatio-temporal points were
assigned to each unit by 1 update/sec frequency. We defined
4 events: 1. SEE: a unit becomes visible to an other one, 2.
HIDE: a unit becomes invisible to an other one, 3. FIRE:
a unit fires, 4. HURT: a unit’s health is decreased by a hit.

(a) Map 1 (b) Map 2

Figure 5: Two example maps created for testing purposes. The first map was created by a random landscape generator. The
second one has a separating gorge across the map, which is crossed by two “bridges”. There are potential entrenchment sites
on both sides of the gorge. Both maps are 5 km × 5 km in size.

We assigned an importance of 20 to SEE and HIDE events,
while FIRE/HURT got 40.

After the normalisation step first described by (Shi & Ma-
lik 2000), we created a 15 dimensional eigenvector projec-
tion retaining the largest eigenvalues (Shi & Malik 2000).
We then used the algorithm of (Zelnik-Manor & Perona
2004) to automatically determine the number of clusters.
This method works by performing rotations of the matrix
of eigenvectors by defining a cost function which penalises
configurations which do not conform to the expected block-
diagonal form. The cost function can be used to measure the
fitness of clustering when different number of clusters are
selected, thus automatic selection of the number of clusters
is possible.

Results
As mentioned in the introduction, the unsupervised nature
of clustering makes hard to validate the results. In some
cases, even humans will not agree how to split up engage-
ments. Therefore we created scenarios where the behaviour
was governed by simple plans, and compared the result of
the algorithm on these scenarios with our original intentions.

Figure 7 shows two results on the maps of Fig. 5. 5 blue
and 4 red units were placed on the first map. 4 blue units
were grouped initially in the upper left corner, 2 red units
were placed in the upper right corner, a red unit was placed
into the lower right corner and a red and a blue unit was
placed in the lower left corner. The four blue units first en-
gaged the two reds in the upper half of the scene, which
resulted in the destruction of both red units and the corre-
sponding loss of a single blue unit. Meanwhile, the red unit
in the lower right took a defensive position and the single
red and blue units tried to destroy each other in a duel. The
three blue units took a right turn and destroyed the defend-
ing red one, and joined the last blue unit to destroy the last
red one.

The scenario had 4399 points to cluster in total. The algo-
rithm found that 3 clusters are optimal. It can be seen that the
main elements of this description are captured by the clus-
tering algorithm by separating the elimination of the two red
units, the elimination of the single red unit and finally the
endgame. The output demonstrates that the algorithm is ca-
pable of differentiating between parallel ongoing elements,
because the temporal length of the yellow segment is equal

to the length of the whole battle.
On the second map, 7 blue and 8 red units were placed in

the two opposing sides of the gorge. The red units started
behind the ridge of the southern side, so initially they were
behind cover. The blue units took reinforced positions be-
hind small hills and in depressions on the northern side of
the gorge. The red units first tried to destroy the blue ones
with a direct frontal attack which resulted in the loss of two
red units and no blue units. Three red units then tried to get
into the back of the defending blues with a flanking manoeu-
vre using the left-hand side “bridge” over the gorge, while
the remaining 3 units tried to divert the blue units’ attention.
Finally, red tried to attack from two sides simultaneously.

The scenario had 4038 measure points. The algorithm
split the engagement into two, which correspond to the main
engagement and the flanking manoeuvre. We can also notice
that the clustering of the final points belonging to the flank-
ing red units is noisy. A smoothing post-processing phase
which prohibits clusters to be changed frequently may help
to draw more stable boundaries between clusters.

We also tested the algorithm’s robustness against changes
in the history of events. We ran the algorithm on the first
scenario while randomly chosen events were erased from the
history with a gradually increasing proportion of all events.
The calculations were done ten times for each ratio applied.
The results are summarised on Fig. 6. The number of
points clustered equivalently to the case when the full his-
tory is used deteriorates significantly only when > 60% of
the events were deleted.

Discussion
Regarding computational complexity, the algorithm’s hard-
est part is the eigenvector decomposition, which takes
O(n3) time and O(n2) space in the most general case,
where n is the number of points to be clustered. If we can ap-
proximate affinities with sparse structures, the spectral clus-
tering algorithm can be kept linear in the number of points
to be clustered, as explained in (Shi & Malik 2000). The re-
sults shown on Fig. 7 took less than 1 minute on an average
desktop computer to compute with MATLAB.

Spectral clustering has been applied previously for im-
proving learning systems by subgoal selection (Mahadevan
& Maggioni 2006; Şimşek, Wolfe, & Barto 2005; Zivkovic,
Bakker, & Krse 2006), however, all of these works addressed

-2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-2000

-1500

-1000

-500

0

500

1000

1500 START

END/DTD

649

START

END/DTD

0

124

181

234

286

341

503

555

START

END/DTD

59

444

START

END/DTD

START

END/DTD

0

61 141

243

296 350

429

486
577

680
START

END/DTD

0

59

117

219
322

424

526

593

661

START

END/DTD

059
163

START

END/DTD

START

END/DTD

0

99

201304

406

(a) Scenario of Map 1

-1400 -1200 -1000 -800 -600 -400 -200 0
-400

-200

0

200

400

600

800

START

END/DTD

STARTS

END/DTD

STARTS

END/DTD

END/DTD
END/DTD

END/DTD
END/DTD

END/DTD

STARTS

END/DTD

END/DTD

END/DTD

103

206

END/DTD
309

END/DTD

END/DTD

103

160

219

290 END/DTD

0

(b) Scenario of Map 2

Figure 7: Two example results of the segmentation algorithm. The figures depicts a top-down view of the maps. Unit
trajectories in space are marked by a continuous line and starting at the point marked by “START(S)” and ended or destroyed
at the point marked by “END/DTD”. These labels has a color appropriate to the side of the unit (red or blue). The numbers on
the trajectories are the time spent for the trajectory point nearby since the start of the engagement in seconds. Colored points
placed on unit trajectories are marking different clusters found by the algorithm. Distance is shown in metres; the point (0, 0)
corresponds to the centre of the maps shown on Fig. 5.

only the spatial and not the temporal domain. There exists
works which use spectral clustering (and related methods)
for grouping spatio-temporal actions (Yuan, Zhang, & Lin
2005; Park, Zha, & Kasturi 2004; Jenkins & Mataric 2004;
Porikli 2005; Zelnik-Manor & Irani 2006), but all of these
are applied to different problem domains, like video seg-
mentation, and therefore do not consider the requirements
outlined in the previous sections. For example, (Zelnik-
Manor & Irani 2006) clusters the points of spatio-temporal
gradients of video sequences. This method is not applica-
ble in our case because we would like to keep the excellent
grouping performance of spectral clustering over static po-
sitions as well, while extending it into the temporal domain
at the same time.

The proposed spatio-temporal measure can be enhanced
in lots of ways. A possible extension could, instead of mod-
ifying the affinity values directly, adjust the local scaling of
the affinities to incorporate events into the affinities, sim-
ilarly as performed in (Zelnik-Manor & Perona 2004) for
spectral clustering over homogenous dimensions.

Conclusions
We proposed a novel affinity measure to extend spectral
clustering into the temporal domain for automatical segmen-
tation of multi-agent behaviour. The measure is equivalent
to the well-known Gaussian affinities in the case of static
problems, but shown to be superior for classifying multi-
agent behaviour when the problem space extends to the tem-
poral domain. We also proposed a technique to incorporate
events with different importance. The ideas were demon-
strated with segmentating multi-agent behaviour in a strate-
gic game, where we found that the output of the algorithm
coincides with the human-provided segmentations. The
technique can be used in analysing multi-agent behaviour,
for automatic subgoal extraction or may help with plan ex-
traction or recognition.

References
Bach, F. R., and Jordan, M. I. 2006. Learning spectral
clustering, with application to speech separation. Journal
of Machine Learning Research 7:1963–2001.
Bengio, Y.; Delalleau, O.; Le Roux, N.; Paiement, J.-F.;
Vincent, P.; and Ouimet, M. 2004. Learning eigenfunc-
tions links spectral embedding and kernel PCA. Neural
Computation 16(10):2197–2219.
Devaney, M., and Ram, A. 1998. Needles in a haystack:
Plan recognition in large spatial domains involving multi-
ple agents. In AAAI/IAAI, 942–947.
Fischer, I., and Poland, J. 2005. Amplifying the block
matrix structure for spectral clustering. In Proceedings of
the 14th Annual Machine Learning Conference of Belgium
and the Netherlands, 21–28.
Ham, J.; Ahn, I.; and Lee, D. 2006. Learning a
manifold-constrained map between image sets: applica-
tions to matching and pose estimation. In CVPR06.
Jenkins, O. C., and Mataric, M. J. 2004. A spatio-temporal

extension to isomap nonlinear dimension reduction. In
Proceedings ICML, 441–448.
Lafon, S.; Keller, Y.; and Coifman, R. R. 2006. Data fu-
sion and multicue data matching by diffusion maps. IEEE
Transactions on pattern analysis and machine intelligence
28(11):1784–1797.
Mahadevan, S., and Maggioni, M. 2006. Proto-value func-
tions: A Laplacian framework for learning representation
and control in Markov decision processes. Technical Re-
port 2006-35.
Nair, R.; Tambe, M.; Marsella, S.; and Raines, T. 2004.
Automated assistants for analyzing team behaviors. Au-
tonomous Agents and Multi-Agent Systems 8(1):69–111.
Ng, A.; Jordan, M.; and Weiss, Y. 2001. On spectral clus-
tering: Analysis and an algorithm. In Advances in Neural
Information Processing Systems, volume 14.
Park, J.; Zha, H.; and Kasturi, R. 2004. Spectral clus-
tering for robust motion segmentation. In Pajdla, T., and
Matas, J., eds., ECCV 2004, number 3024 in LNCS, 390–
401. Springer-Verlag Berlin, Heidelberg.
Porikli, F. 2005. Ambiguity detection by fusion and con-
formity: a spectral clustering approach. In International
Conference on Integration of Knowledge Intensive Multi-
Agent Systems, 366–372.
Saul, L. K.; Weinberger, K. Q.; Sha, F.; Ham, J.; and Lee,
D. D. 2006. Semisupervised Learning. MIT Press: Cam-
bridge, MA. chapter “Spectral methods for dimensionality
reduction”.
Shi, J., and Malik, J. 2000. Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 22(8):888–905.
Şimşek, Ö.; Wolfe, A. P.; and Barto, A. G. 2005. Iden-
tifying useful subgoals in reinforcement learning by local
graph partitioning. In Proceedings of the Twenty-Second
International Conference on Machine Learning, volume
119 of ACM International Conference Proceeding Series,
816–823.
Sukthankar, G., and Sycara, K. 2006. Robust recognition
of physical team behaviors using spatio-temporal models.
In Proceedings of AAMAS, 638–645.
Xu, R., and Wunsch, D. 2005. Survey of clustering algo-
rithms. IEEE Transactions on Neural Networks 16(3):645–
678.
Yuan, J.; Zhang, B.; and Lin, F. 2005. Graph partition
model for robust temporal data segmentation. In Ho, T.;
Cheung, D.; and Liu, H., eds., PAKDD 2005, number 3518
in LNAI, 758–763. Springer-Verlag Berlin, Heidelberg.
Zelnik-Manor, L., and Irani, M. 2006. Statistical analysis
of dynamic actions. IEEE Trans. on Pattern Analysis and
Machine Intelligence 28(9):1530–1535.
Zelnik-Manor, L., and Perona, P. 2004. Self-tuning spectral
clustering. Eighteenth Annual Conference on NIPS.
Zivkovic, Z.; Bakker, B.; and Krse, B. 2006. Hierarchical
map building and planning based on graph partitioning. In
IEEE International Conference on Robotics and Automa-
tion, 803–809.

