Predicting the movements of robot teams using
generative models
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Abstract When a robot plans its actions within an environment comgimulti-
ple robots, it is often necessary to take into account thermstnd movements of
the other robots to either avoid, counter, or cooperate thi¢hn, depending on the
scenario. Our predictive system is based on the biologidatipired, simulation-
theoretic approach that uses internal generative modsiagte-robot applications.
Here, we move beyond the single-robot case to illustratethege generative mod-
els can predict the movements of the opponent’s robots, @pphed to an adver-
sarial scenario involving two robot teams. The system is &brecognise whether
the robots are attacking or defending, and the formatioy #ne moving in. It can
then predict their future movements based on the recogmig®itl. The results
confirm that the speed of recognition and the accuracy ofigiied depend on how
well the models match the robots’ observed behaviour.

1 Introduction

There are many situations where it is beneficial to model aadigt the behaviour
of other robots in the environment. For example: if each tadoperating indepen-
dently then it is important to avoid collisions by predigtiaach robot’s trajectory;
in an adversarial setting, for example RoboCup soccer (it al, 1998), itis cru-
cial to be able to neutralise and counter the opponentsggtand in environments
where the robots have a common goal, co-operation is usnattgssary to help
solve the task, or to avoid duplicating work.
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The obvious way to obtain the objectives of the other rob®te isimply com-
municate with them and ask what they intend to do. However amyrsituations
this is infeasible, because an opponent will be unwillingpamd over its plans and
tactics, or the robots may not share a common language saviligyot be able to
understand the request, or even when communication fagdsritportant to have a
fallback mechanism to continue the task. Therefore, indltases, the intentions of
the robots must be predicted based purely on observation.

In this work, an observation-based predictive system wvelapplied to an adver-
sarial, real-time engagement between two teams. This doimtime-sensitive—in
crisis situations the decision making time is crucial; h@re numerous autonomous
robots (which could also represent humans, vehicles oradijcit has a rich struc-
ture that allows intention recognition at different levefsa command hierarchy; the
environment, including team objective and allocationyisamic and constantly un-
der review.

2 Background

It can be seen that recognising and predicting the goalsraadtions of teams of
robots is essentially a problem of model matching. Eachtrobltects information
of the state of the environment and this data can be acted dakiyg either a
descriptive or generative approach.

The descriptive approach uses the extraction of low-legatures to match
against pre-existing representations. For example, imthki-agent domain, De-
vaney and Ram (1998) analyse spatio-temporal traces fordit@ded motion,
whether moving apart or together, however this may not seasdy to more com-
plex plans. Using a similar technique Sukthankar and Sy@41@6) create spatio-
temporal models to encode group behaviour, then matchstriacéhese models.
Although, again, more complex behaviours may not be ableetddscribed using
spatio-temporal models alone. In the domain of a soccermizeetz and Kirchlech-
ner (2005) try to extract explicit rules from training datbowever, their approach
could be prone to over-fitting if only a limited amount of waig data is available,
hence making it difficult to apply the results to classify ngtuations.

Within the generative approach a set of latent (hiddenyatédes are introduced
that encode the causes tltan produce the observed data. Using these variables
for a recognition and prediction task involves modifying frarameters of the gen-
erating process until the generated data can be favouranhpared against the
observed data. This approach has been used in the singié-Ggmmain by using
graphical models, such as Hidden Markov Models (HMMs) (Buale 2002), or
by using internal models to perform prediction through datian (Demiris and
Khadhouri, 2006; Demiris, 2007).

The simulation-based approach is linked to the “simulati@ory” perspective
on human cognition that states that an observer’s cogrtine motor structures
have a duel role: both acting overtly, and simulating andjimag actions and their
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consequences (Hesslow, 2002). A number of architectunes been inspired by
this. One such approach (dubbed HAMMER) uses a hierarctyséém of inverse
(plan) and forward (predictor) models, with each model feotlectively known as
internal models) being configured to a particular actionnfides and Khadhouri,
2006). The system finds the matching action by using the ntbdehas the lowest
error between the predicted state from each forward modktteobserved state.
This architecture has the advantage that it works well itim@situations because it
will always produce the most closely matching model at arigtpoather than other
approaches which make a selection then backtrack if it. fAileeview by Demiris
(2007) shows the applicability of the use of these internatiets to multi-agent
systems. Related work by Takacs et al (2007) on segmermtgstemporal traces
of multiple agents paves the way for applying inverse motefiistinct groups of
agents.

3 Objectives

The goal of this work is to investigate the simulationistgextive approach in multi-
agent systems: whether an opponent’s intentions can beedfby creating plausi-
ble plans (or hypotheses) that, as time progresses, aréasgauto find the closest
match with the observed behaviour, i.e., prediction thiotig generation of mul-
tiple competing plans. This is based on the assumption ligadbjective that was
used to create the best-matching plan correlates with thatinf the opponent.

In the chosen scenario for this work, two opposing teamstgfrbgeneous robots
are fully observable within a simulated, large-scale, oatcenvironment, and each
opponent may have many possible objectives at differeetdef abstraction. Such
objectives vary from “eliminate the opponents’ bases” tefahd areas of strategic
importance” at the high level, and at the low level the obyest are of the form
“attack target with a wedge formation” or “surround target”

It is assumed that models exist for generating plans for dmncander’'s own
team, and therefore hypotheses for the opponent’s teamreated by applying
these models to the opponent’s robots, in other words, gekitwhat would | do in
that situation” approach (Demiris, 2007; Demiris and Khauaify 2006). Addition-
ally, the use of generative models has the advantage that#mebe used not only
to recognise and predict, but also to produce movement.

4 System Architecture

Starting at the lowest level, taking a generative approacdtet¢ognition and pre-
diction of plans requires a method to generate and evaleat#iic primitive actions
that a team of robots can perform. The biologically-inspiHAMMER architecture
provides a starting point for the system (see figure 1). lbimjprised of three main
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Fig. 1 The HAMMER ar-
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components: thewverse modelgplan generators), tferward models (predictors)
and theevaluator (Demiris and Khadhouri, 2006; Demiris, 2007).

An inverse model takes the current world state and an assigme, and outputs
the required waypoints and robot parameters that, undee specified constraints,
it believes are necessary for each robot to achieve the Baah parallel instance
of a plan is paired with an instance of the forward model thavjgles an estimate
of the events that will occur if the generated plan is folldwa&t each time step this
estimate is returned to the inverse model to tune any paeamef the actions to
achieve the desired goal.

To determine which of these inverse/forward-model pairstaecurately de-
scribes the events that are occurring, periodically thewuhuf each forward model
is compared with the actual world state. These comparisesigltrin confidence
values that behave as an indicator of how closely the obdervents match each
particular prediction, and they are subsequently accutediiaver time until such a
point that one model pair achieves a clear separation frenothers. This model
can then be simulated further into the future to provide alist®n of upcoming
events.

5 Implementation

The implementation of the system is divided into three mattisns (as shown in
figure 2): the simulators that host the human-controllechteaf robots; the sim-
ulators running in a slave mode, executing the internal nsp@ad the evaluator
that bridges the two, sending the state of the human-cdedrelorid to the slave
simulators and subsequently gathering and analysingphedictions.
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5.1 Simulator
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Fig. 2 System implementation.This shows the Fig. 3 Simulator screenshot.This shows the
human-controlled simulator instances at the tapterface for the human-controlled teams. The
of the diagram, feeding the system state into thetatus of each robot is shown down the left,
evaluator, which sends it to each inverse/forwardand there is a minimap showing the locations
model pair and receives the corresponding pref the robots in the bottom right.

dicted state. These states are then compared to

get a confidence for each inverse model.

When robots interact with each other, they can affect thie sththe environ-
ment and of themselves, for example a tackle in RoboCup oddis&ruction of a
vehicle in a military scenario. Hence, for the implememtatf our architecture, we
obtain the “real-world” state from humans commanding teafmebots within a re-
alistic, distributed, computer-simulated environmeihte Engine of the simulator is
based on Delta3D (Darken et al, 2005), which is an open-sqnaject to integrate
various software libraries, such as Open Scene Graph (G3i&n Dynamics En-
gine (ODE), Character Animation Library 3D (Cal3D), GameWwarking Engine
(GNE), etc., into a coherent platform for simulation and gam

The 3D engine (OSG) was used to model a large outdoor tesa@the screen-
shot in figure 3), with the height and other features (textwees, buildings, etc) of
the terrain being displayed based on 2D feature maps. Theiqgshgngine (ODE)
was used to accurately model the movement of the varioussiged vehicles, with
additional control of their aiming and firing mechanismseToise introduced by
the physics engine provides a stochastic element to thematof scenarios.

When using the simulator, the human commanders are re§pefisi choosing
goal positions for their robots, so they are free to perforamoeuvres and forma-
tions as they see fit.
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5.2 Distributed Computing I nfrastructure

A peer-to-peer approach was taken to allow each instandmtdate the local com-

mander’s robots (as can be seen at the top of figure 2). Pualittwents, and other
events such as projectile detonations, are sent on eack fshthe simulation over

the network to the opponent, and representations of thasgt®are shown on the
opponent’s instance. For example, a 3D mesh of an opponerived to the posi-

tion that was computed on the opponent’s instance.

Additionally, a distributed, network-based, approach wsesd to implement the
predictive component of the system, which alleviates sofm&e computational
burden of the execution of many models in parallel. This sehat each instance
of the simulator can be run on a different PC, or many simugaton on a multi-
cored PC.

A separate program on the network acts as\atuator, sitting between the “real
world” simulation and the slave client simulators that astirey as inverse/forward-
model pairs. Detailed state information is obtained fromlorld simulation peri-
odically. This state is used to initialise the slave cliesntsl commands are sent to
activate the desired inverse model. The simulation is ruamfaster than real-time
and the predictions fed back to the evaluator. Due to therfagnulation, the result
of many different commands can be predicted before needibg tompared with
the actual state.

5.3 Evaluation Process

To analyse each inverse/forward-model pair, the evalaioulates the normalised
vectors of the movement from the robot’s previous positmtdth the predicted
the actual positions. The dot product of these vectors is taken and scaled by
the shortest vector, as a proportion of the longest vectgiv® the confidence of
that prediction. This metric has the desired charactesdtiat if the robot moves
towards or away from the predicted position then the confideapproaches 1 or
-1 respectively, or if it moves perpendicular to the pregtigbosition then the confi-
dence is zero. An additional condition was added so thatiftlagnitudes of both
vectors are less than one metre then the confidence is 1dtegmpf heading. This
is to reduce errors from the case where the robot drifts deslslightly and there-
fore requires a dead-zone with a radius of 1m, within whighrttbot is counted as
stationary. Therefore the confidencecan be expressed as

1 if ]a] < 1and|p| <1,

c= i .
é~ﬁim£((‘g‘:“z“; otherwise.

wherea s the vector from the start position to thetual position and is the vector

from the start position to thpredicted position, anda and p are the normalised

vectors.
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6 Experiments & Results

The experimental setup consists of two human commandetsreaning an in-
stance of the simulator and controlling their (red or blegm. The state of each
team is sent over the network to each instance, and also &ahetor. In this case
the predictive system was applied against the blue tearb&tsdtheopponent).

To test the feasibility of the generative approach, seviekedrse models were
created. Each robot can have botmanoeuvre model and gormation model ap-
plied to it. Themanoeuvre inverse models that are available for execution are either
attack or defend, these are defined as follows:

Attack  The robot finds the nearest enemy robot and moves towardsiliitus
in “weapons” range and has clear line-of-sight. At this pdistops and “fires at
the enemy”.

Defend The robot finds the nearest enemy robot, and if it has cleardirsight
then the robot moves in the opposite direction until hiddentfits sight.

Theformation inverse models are eithesedge, circle, line or columnand are shown
in figure 4. Each formation is described by a weighted graptdédined by Ji and
Egerstedt (2007)), so each robot must keep a distance ddoplthe weight) from
their neighbours and this distance is assumed to be a co®€tanfor this experi-
ment. Therefore their target position is a linear comboratf the offsets to each of
the positions required to maintain the distance to eacheottimnected neighbours.
Each formation requires a robot to act as the leader and thésinvplemented by
using a heuristic measure to select the robot that is netrdébe target position.
This then allows the other positions to be assigned by neasighbour, starting

with the leader.
@’ O%)z 16172 19
34

Fig. 4 Weighted graphs describing each formationFrom left to right:wedge, circle, line and
column. The numbers indicate the weight of the connection, higlheners mean increasing re-
pulsive forces. Those with just one weight specified indisadhat all the weights take this value.
The darker grey circle indicates the robot that acts as teleof the formation.

The evaluator launches two instances of the simulator ngnim a slave mode,
and sets a queue of models to simulate against the oppomdm’srobots. Due
to our approach, the manoeuvre and formation models carmntthted indepen-
dently, therefore all combinations must be evaluated. Thisecause the specific
movements of the robots in formation depend on the the raitrichined by the ma-
noeuvre model. For example, features of the terrain affecspeed of each robot,
and any local object avoidance will cause the formation talibeupted. However,
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these disruptions can be accounted for by simulating thedtion along the route
determined by the manoeuvre model. Therefore on one irstidweattack model
with each of the formations is simulated and on the othed#fend model is used,
again with each of the formations.

For ease of analysis, there are three robots on the blue teduonz robot on the
red team. Each slave simulator is initialised with the wathte then run for a pre-
specified duration (five seconds) at an increased time séa)eaqd the positions
of the robots are returned to the controller within two st he instance is then
reset and the process repeated with the next model in theegupan the receipt of
the next world state. Therefore a result for each model iainbd every 8 seconds.

As can be seen from the trace of each robot’s positions feetkperiment (shown
in figure 5), the red team’s objective is to at first to stay lkiddehind a ridge,
then once the opponent’s robots are close enough, movelweidge and attack.
The blue team'’s robots move together in an attacking wedgedtion, towards the
hidden red robot. When they move closer to the red robot, theye into a line
formation (at around timestep 60). Then when the red robwtesointo range they
stop and fire at it, until it is destroyed.

Trace of the robots’ x-y movements on a contour map of the terrain Accumulated average confidences of different models
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Fig. 5 Unit movements.A contour map (dashed Fig. 6 Accumulated confidences of each model
lines), and a trace (thick lines) of the movementShowing theattack and defend inverse models,
of blue robots (starting at the bottom, in a valand the formationsvedge, circle, line and col-
ley), and the red robot (starting at the top, on @amn applied to each. The change in formation at
ridge). The numbers on the traces represents tiraestep 60 is not clear.

time step at that point, and the numbers on the

contours represent the height of the terrain.

The overall confidence of each combination of inverse moidetslculated by
averaging the confidence of each individual robot withintdeaam, repeated for each
simulator instance. The accumulated confidence valuesarersin figure 6. From
this we can see the separation between the attacking ordiefemodels, but the
change in formation that occurs at around timestep 60 isleat.cThis is because
the averaging of the confidence takes place over all the sabtiie formation, how-
ever, the leader of the formation will always have the sanmdidence regardless of
the formation being performed. Therefore we can separaténtterse models by
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Accumulated confidences of different models.
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Fig. 7 Accumulated confidences for attack or Fig. 8 Accumulated confidences for formation

defend models.Using the average confidence ofnodels.Using the average confidence of the for-

the leader, a clear separation can be seen betwesation excluding the leader, the change from

attack and defend. wedge to line formation can be seen at points A
and B respectively.

averaging the confidence values of the leader in all the foom&for eachmanoeu-
vre model (shown in figure 7) and by averaging the confidenceseofdimaining
robots each of the formations (i.e., excluding the leadea) apply to the winning
manoeuvre model (shown in figure 8). Now the change in formation thatuosc
around timestep 60 can clearly be seen by the slowing of théidence of the
wedge formation, and the gaining in confidence of the linenation.

7 Conclusions & Future Work

The work reported here constitutes a first study into the Gétion theory” ap-
proach to intention recognition when applied to the muttobdomain. Our results
indicate that such approach holds good promise as it is alpeebgnise and predict
whether robots are attacking or hiding from each other, haddrmation that they
are following in a simulated adversarial scenario. Theesyss also able to predict
the future positions of the robots, assuming the same mbdéds

It is still an open problem of how to best combine the confidsmaf each indi-
vidual robot into an overall confidence for the inverse mobieinediate extensions
include the parameterisation of the inverse models sotHatiexample, a robot is
moving slowly due to damage, the speed of the robot set byntlerse model can
be tuned to match. This tuning can be based on the feedbable aionfidence of
the previous prediction to the inverse model.

A drawback of this approach is the high computational cagptired to evaluate
the inverse/forward-model pairs for each possible hyith&@here are several so-
lutions to this, such as, assigning preconditions to eadheimodels so they are
only executed under certain circumstances, or to brieflyeaoh model and to rank
them based on their confidence to find the most promising ones.
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Longer-term predictions could be produced by inverse nwaitielt do not depend
directly on the world state, but combine the confidence ofdghelevel inverse mod-
els (e.g. formations or manoeuvres) with higher-leveistias (e.g. robot losses or
speed of movement), to generate predictions that have a kpadial and temporal
resolution. For example, a high-level inverse model suctdatend base” would
predict that the movement of robots is low, and that they &gkl¥ concentrated,
with the centre of mass being in the base, and would be reiatbif thedefend
inverse model has a high confidence. This can lead to a syktnstuseful when
using the simulator to alert the commander when an attaakiisiment, or to in-
fer the high-level intentions of the opponent, so the conaeacan better form an
effective strategy.

We are currently persuing an extension to this system tisanass that the en-
vironment is only partially observable, for example thrbibe implementation of
the architecture on our team of outdoor P3-ATs operatingrasiléi-robot system.
This makes the deployment of sensors to detect the posifitinecopponent an
important part of the strategy. This can be done by makingrapsons on the lo-
cations of the opponent and running the inverse/forwardetsdhen ranking the
results by the threat posed by each prediction, then depidiie sensors to verify
the assumptions, covering the most risky models.
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