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Abstract When a robot plans its actions within an environment containing multi-
ple robots, it is often necessary to take into account the actions and movements of
the other robots to either avoid, counter, or cooperate withthem, depending on the
scenario. Our predictive system is based on the biologically-inspired, simulation-
theoretic approach that uses internal generative models insingle-robot applications.
Here, we move beyond the single-robot case to illustrate howthese generative mod-
els can predict the movements of the opponent’s robots, whenapplied to an adver-
sarial scenario involving two robot teams. The system is able to recognise whether
the robots are attacking or defending, and the formation they are moving in. It can
then predict their future movements based on the recognisedmodel. The results
confirm that the speed of recognition and the accuracy of prediction depend on how
well the models match the robots’ observed behaviour.

1 Introduction

There are many situations where it is beneficial to model and predict the behaviour
of other robots in the environment. For example: if each robot is operating indepen-
dently then it is important to avoid collisions by predicting each robot’s trajectory;
in an adversarial setting, for example RoboCup soccer (Kitano et al, 1998), it is cru-
cial to be able to neutralise and counter the opponents’ actions; and in environments
where the robots have a common goal, co-operation is usuallynecessary to help
solve the task, or to avoid duplicating work.
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The obvious way to obtain the objectives of the other robots is to simply com-
municate with them and ask what they intend to do. However in many situations
this is infeasible, because an opponent will be unwilling tohand over its plans and
tactics, or the robots may not share a common language so theywill not be able to
understand the request, or even when communication fails itis important to have a
fallback mechanism to continue the task. Therefore, in these cases, the intentions of
the robots must be predicted based purely on observation.

In this work, an observation-based predictive system will be applied to an adver-
sarial, real-time engagement between two teams. This domain is time-sensitive—in
crisis situations the decision making time is crucial; there are numerous autonomous
robots (which could also represent humans, vehicles or aircraft); it has a rich struc-
ture that allows intention recognition at different levelsof a command hierarchy; the
environment, including team objective and allocation, is dynamic and constantly un-
der review.

2 Background

It can be seen that recognising and predicting the goals and intentions of teams of
robots is essentially a problem of model matching. Each robot collects information
of the state of the environment and this data can be acted on bytaking either a
descriptive or generative approach.

The descriptive approach uses the extraction of low-level features to match
against pre-existing representations. For example, in themulti-agent domain, De-
vaney and Ram (1998) analyse spatio-temporal traces for coordinated motion,
whether moving apart or together, however this may not scaleeasily to more com-
plex plans. Using a similar technique Sukthankar and Sycara(2006) create spatio-
temporal models to encode group behaviour, then match traces to these models.
Although, again, more complex behaviours may not be able to be described using
spatio-temporal models alone. In the domain of a soccer match Beetz and Kirchlech-
ner (2005) try to extract explicit rules from training data.However, their approach
could be prone to over-fitting if only a limited amount of training data is available,
hence making it difficult to apply the results to classify newsituations.

Within the generative approach a set of latent (hidden) variables are introduced
that encode the causes thatcan produce the observed data. Using these variables
for a recognition and prediction task involves modifying the parameters of the gen-
erating process until the generated data can be favourably compared against the
observed data. This approach has been used in the single-agent domain by using
graphical models, such as Hidden Markov Models (HMMs) (Bui et al, 2002), or
by using internal models to perform prediction through simulation (Demiris and
Khadhouri, 2006; Demiris, 2007).

The simulation-based approach is linked to the “simulationtheory” perspective
on human cognition that states that an observer’s cognitiveand motor structures
have a duel role: both acting overtly, and simulating and imagining actions and their
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consequences (Hesslow, 2002). A number of architectures have been inspired by
this. One such approach (dubbed HAMMER) uses a hierarchicalsystem of inverse
(plan) and forward (predictor) models, with each model pair(collectively known as
internal models) being configured to a particular action (Demiris and Khadhouri,
2006). The system finds the matching action by using the modelthat has the lowest
error between the predicted state from each forward model and the observed state.
This architecture has the advantage that it works well in on-line situations because it
will always produce the most closely matching model at any point, rather than other
approaches which make a selection then backtrack if it fails. A review by Demiris
(2007) shows the applicability of the use of these internal models to multi-agent
systems. Related work by Takács et al (2007) on segmenting spatio-temporal traces
of multiple agents paves the way for applying inverse modelsto distinct groups of
agents.

3 Objectives

The goal of this work is to investigate the simulationist generative approach in multi-
agent systems: whether an opponent’s intentions can be inferred by creating plausi-
ble plans (or hypotheses) that, as time progresses, are simulated to find the closest
match with the observed behaviour, i.e., prediction through the generation of mul-
tiple competing plans. This is based on the assumption that the objective that was
used to create the best-matching plan correlates with the intent of the opponent.

In the chosen scenario for this work, two opposing teams of heterogeneous robots
are fully observable within a simulated, large-scale, outdoor environment, and each
opponent may have many possible objectives at different levels of abstraction. Such
objectives vary from “eliminate the opponents’ bases” to “defend areas of strategic
importance” at the high level, and at the low level the objectives are of the form
“attack target with a wedge formation” or “surround target”.

It is assumed that models exist for generating plans for the commander’s own
team, and therefore hypotheses for the opponent’s team are created by applying
these models to the opponent’s robots, in other words, taking a “what would I do in
that situation” approach (Demiris, 2007; Demiris and Khadhouri, 2006). Addition-
ally, the use of generative models has the advantage that they can be used not only
to recognise and predict, but also to produce movement.

4 System Architecture

Starting at the lowest level, taking a generative approach to recognition and pre-
diction of plans requires a method to generate and evaluate certain primitive actions
that a team of robots can perform. The biologically-inspired HAMMER architecture
provides a starting point for the system (see figure 1). It is comprised of three main
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Fig. 1 The HAMMER ar-
chitecture. Multiple inverse
models receive the world state
and suggest possible com-
mands (C1-Cn), which are
formed into predictions of
the next world state by the
corresponding forward model
(P1-Pn). These predictions are
verified on the next time step,
resulting in a set of confidence
values.

components: theinverse models(plan generators), theforward models (predictors)
and theevaluator (Demiris and Khadhouri, 2006; Demiris, 2007).

An inverse model takes the current world state and an assigned goal, and outputs
the required waypoints and robot parameters that, under some specified constraints,
it believes are necessary for each robot to achieve the goal.Each parallel instance
of a plan is paired with an instance of the forward model that provides an estimate
of the events that will occur if the generated plan is followed. At each time step this
estimate is returned to the inverse model to tune any parameters of the actions to
achieve the desired goal.

To determine which of these inverse/forward-model pairs most accurately de-
scribes the events that are occurring, periodically the output of each forward model
is compared with the actual world state. These comparisons result in confidence
values that behave as an indicator of how closely the observed events match each
particular prediction, and they are subsequently accumulated over time until such a
point that one model pair achieves a clear separation from the others. This model
can then be simulated further into the future to provide a prediction of upcoming
events.

5 Implementation

The implementation of the system is divided into three main sections (as shown in
figure 2): the simulators that host the human-controlled teams of robots; the sim-
ulators running in a slave mode, executing the internal models; and the evaluator
that bridges the two, sending the state of the human-controlled world to the slave
simulators and subsequently gathering and analysing theirpredictions.
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5.1 Simulator

Fig. 2 System implementation.This shows the
human-controlled simulator instances at the top
of the diagram, feeding the system state into the
evaluator, which sends it to each inverse/forward-
model pair and receives the corresponding pre-
dicted state. These states are then compared to
get a confidence for each inverse model.

Fig. 3 Simulator screenshot.This shows the
interface for the human-controlled teams. The
status of each robot is shown down the left,
and there is a minimap showing the locations
of the robots in the bottom right.

When robots interact with each other, they can affect the state of the environ-
ment and of themselves, for example a tackle in RoboCup or thedestruction of a
vehicle in a military scenario. Hence, for the implementation of our architecture, we
obtain the “real-world” state from humans commanding teamsof robots within a re-
alistic, distributed, computer-simulated environment. The engine of the simulator is
based on Delta3D (Darken et al, 2005), which is an open-source project to integrate
various software libraries, such as Open Scene Graph (OSG),Open Dynamics En-
gine (ODE), Character Animation Library 3D (Cal3D), Game Networking Engine
(GNE), etc., into a coherent platform for simulation and games.

The 3D engine (OSG) was used to model a large outdoor terrain (see the screen-
shot in figure 3), with the height and other features (texture, trees, buildings, etc) of
the terrain being displayed based on 2D feature maps. The physics engine (ODE)
was used to accurately model the movement of the various agents and vehicles, with
additional control of their aiming and firing mechanisms. The noise introduced by
the physics engine provides a stochastic element to the outcome of scenarios.

When using the simulator, the human commanders are responsible for choosing
goal positions for their robots, so they are free to perform manoeuvres and forma-
tions as they see fit.
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5.2 Distributed Computing Infrastructure

A peer-to-peer approach was taken to allow each instance to simulate the local com-
mander’s robots (as can be seen at the top of figure 2). Positional events, and other
events such as projectile detonations, are sent on each frame of the simulation over
the network to the opponent, and representations of those events are shown on the
opponent’s instance. For example, a 3D mesh of an opponent ismoved to the posi-
tion that was computed on the opponent’s instance.

Additionally, a distributed, network-based, approach wasused to implement the
predictive component of the system, which alleviates some of the computational
burden of the execution of many models in parallel. This means that each instance
of the simulator can be run on a different PC, or many simulators run on a multi-
cored PC.

A separate program on the network acts as anevaluator, sitting between the “real
world” simulation and the slave client simulators that are acting as inverse/forward-
model pairs. Detailed state information is obtained from the world simulation peri-
odically. This state is used to initialise the slave clientsand commands are sent to
activate the desired inverse model. The simulation is run ata faster than real-time
and the predictions fed back to the evaluator. Due to the faster simulation, the result
of many different commands can be predicted before needing to be compared with
the actual state.

5.3 Evaluation Process

To analyse each inverse/forward-model pair, the evaluatorcalculates the normalised
vectors of the movement from the robot’s previous position to both the predicted
the actual positions. The dot product of these vectors is then taken and scaled by
the shortest vector, as a proportion of the longest vector togive the confidence of
that prediction. This metric has the desired characteristics that if the robot moves
towards or away from the predicted position then the confidence approaches 1 or
-1 respectively, or if it moves perpendicular to the predicted position then the confi-
dence is zero. An additional condition was added so that if the magnitudes of both
vectors are less than one metre then the confidence is 1, regardless of heading. This
is to reduce errors from the case where the robot drifts or slides slightly and there-
fore requires a dead-zone with a radius of 1m, within which the robot is counted as
stationary. Therefore the confidence,c, can be expressed as

c =

{

1 if |a| < 1 and|p| < 1,

â· p̂ min(|a|,|p|)
max(|a|,|p|) otherwise.

wherea is the vector from the start position to theactual position andp is the vector
from the start position to thepredicted position, andâ and p̂ are the normalised
vectors.
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6 Experiments & Results

The experimental setup consists of two human commanders each running an in-
stance of the simulator and controlling their (red or blue) team. The state of each
team is sent over the network to each instance, and also to theevaluator. In this case
the predictive system was applied against the blue team’s robots (theopponent).

To test the feasibility of the generative approach, severalinverse models were
created. Each robot can have both amanoeuvre model and aformation model ap-
plied to it. Themanoeuvre inverse models that are available for execution are either
attack or defend, these are defined as follows:

Attack The robot finds the nearest enemy robot and moves towards it until it is
in “weapons” range and has clear line-of-sight. At this point it stops and “fires at
the enemy”.

Defend The robot finds the nearest enemy robot, and if it has clear line-of-sight
then the robot moves in the opposite direction until hidden from its sight.

Theformation inverse models are eitherwedge, circle, line or column and are shown
in figure 4. Each formation is described by a weighted graph (as defined by Ji and
Egerstedt (2007)), so each robot must keep a distance (scaled by the weight) from
their neighbours and this distance is assumed to be a constant 50m for this experi-
ment. Therefore their target position is a linear combination of the offsets to each of
the positions required to maintain the distance to each of the connected neighbours.
Each formation requires a robot to act as the leader and this was implemented by
using a heuristic measure to select the robot that is nearestto the target position.
This then allows the other positions to be assigned by nearest neighbour, starting
with the leader.

Fig. 4 Weighted graphs describing each formation.From left to right:wedge, circle, line and
column. The numbers indicate the weight of the connection, higher numbers mean increasing re-
pulsive forces. Those with just one weight specified indicates that all the weights take this value.
The darker grey circle indicates the robot that acts as the leader of the formation.

The evaluator launches two instances of the simulator running in a slave mode,
and sets a queue of models to simulate against the opponent’sblue robots. Due
to our approach, the manoeuvre and formation models cannot be treated indepen-
dently, therefore all combinations must be evaluated. Thisis because the specific
movements of the robots in formation depend on the the route determined by the ma-
noeuvre model. For example, features of the terrain affect the speed of each robot,
and any local object avoidance will cause the formation to bedisrupted. However,
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these disruptions can be accounted for by simulating the formation along the route
determined by the manoeuvre model. Therefore on one instance theattack model
with each of the formations is simulated and on the other thedefend model is used,
again with each of the formations.

For ease of analysis, there are three robots on the blue team and one robot on the
red team. Each slave simulator is initialised with the worldstate then run for a pre-
specified duration (five seconds) at an increased time scale (4x) and the positions
of the robots are returned to the controller within two seconds. The instance is then
reset and the process repeated with the next model in the queue, upon the receipt of
the next world state. Therefore a result for each model is obtained every 8 seconds.

As can be seen from the trace of each robot’s positions for this experiment (shown
in figure 5), the red team’s objective is to at first to stay hidden behind a ridge,
then once the opponent’s robots are close enough, move over the ridge and attack.
The blue team’s robots move together in an attacking wedge formation, towards the
hidden red robot. When they move closer to the red robot, theymove into a line
formation (at around timestep 60). Then when the red robot comes into range they
stop and fire at it, until it is destroyed.
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The overall confidence of each combination of inverse modelsis calculated by
averaging the confidence of each individual robot within theteam, repeated for each
simulator instance. The accumulated confidence values are shown in figure 6. From
this we can see the separation between the attacking or defending models, but the
change in formation that occurs at around timestep 60 is not clear. This is because
the averaging of the confidence takes place over all the robots in the formation, how-
ever, the leader of the formation will always have the same confidence regardless of
the formation being performed. Therefore we can separate the inverse models by
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Fig. 8 Accumulated confidences for formation
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and B respectively.

averaging the confidence values of the leader in all the formations for eachmanoeu-
vre model (shown in figure 7) and by averaging the confidences of the remaining
robots each of the formations (i.e., excluding the leader) that apply to the winning
manoeuvre model (shown in figure 8). Now the change in formation that occurs
around timestep 60 can clearly be seen by the slowing of the confidence of the
wedge formation, and the gaining in confidence of the line formation.

7 Conclusions & Future Work

The work reported here constitutes a first study into the “simulation theory” ap-
proach to intention recognition when applied to the multirobot domain. Our results
indicate that such approach holds good promise as it is able to recognise and predict
whether robots are attacking or hiding from each other, and the formation that they
are following in a simulated adversarial scenario. The system is also able to predict
the future positions of the robots, assuming the same modelshold.

It is still an open problem of how to best combine the confidences of each indi-
vidual robot into an overall confidence for the inverse model. Immediate extensions
include the parameterisation of the inverse models so that if, for example, a robot is
moving slowly due to damage, the speed of the robot set by the inverse model can
be tuned to match. This tuning can be based on the feedback of the confidence of
the previous prediction to the inverse model.

A drawback of this approach is the high computational cost required to evaluate
the inverse/forward-model pairs for each possible hypothesis. There are several so-
lutions to this, such as, assigning preconditions to each ofthe models so they are
only executed under certain circumstances, or to briefly runeach model and to rank
them based on their confidence to find the most promising ones.
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Longer-term predictions could be produced by inverse models that do not depend
directly on the world state, but combine the confidence of thelow-level inverse mod-
els (e.g. formations or manoeuvres) with higher-level statistics (e.g. robot losses or
speed of movement), to generate predictions that have a lower spatial and temporal
resolution. For example, a high-level inverse model such as“defend base” would
predict that the movement of robots is low, and that they are highly concentrated,
with the centre of mass being in the base, and would be reinforced if thedefend
inverse model has a high confidence. This can lead to a system that is useful when
using the simulator to alert the commander when an attack is imminent, or to in-
fer the high-level intentions of the opponent, so the commander can better form an
effective strategy.

We are currently persuing an extension to this system that assumes that the en-
vironment is only partially observable, for example through the implementation of
the architecture on our team of outdoor P3-ATs operating as amulti-robot system.
This makes the deployment of sensors to detect the position of the opponent an
important part of the strategy. This can be done by making assumptions on the lo-
cations of the opponent and running the inverse/forward models, then ranking the
results by the threat posed by each prediction, then deploying the sensors to verify
the assumptions, covering the most risky models.
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